The Major Illusions Leading to Spatial Disorientation

Post a Comment
Leans: An abrupt correction of a banked attitude, entered too slowly to stimulate the motion sensing system in the inner ear, can create the illusion of banking in the opposite direction.

Coriolis illusion: An abrupt head movement, while in a prolonged constant-rate turn that has ceased stimulating the motion sensing system, can create the illusion of rotation or movement in an entirely different axis.

Graveyard spiral: The illusion of the cessation of a turn while actually still in a prolonged coordinated, constant-rate turn, which can lead a disoriented pilot to a loss of control of the aircraft.

Somatogravic illusion: The feeling of being in a nose-up or nose-down attitude, caused by a rapid acceleration or deceleration while in flight situations that lack visual reference.

Inversion illusion: The feeling that the aircraft is tumbling backwards, caused by an abrupt change from climb to straight-andlevel flight while in situations lacking visual reference.

Elevator illusion: The feeling of being in a climb or descent, caused by the kind of abrupt vertical accelerations that result from upor downdrafts.

False horizon: Inaccurate visual information for aligning the aircraft caused by various natural and geometric formations that disorient the pilot from the actual horizon.

Autokinesis: Nighttime visual illusion that a stationary light is moving, which becomes apparent after several seconds of staring at the light.


The sensory system responsible for most of the illusions leading to spatial disorientation is the vestibular system in the inner ear. The major illusions leading to spatial disorientation are covered below.

Inner Ear
The Leans
A condition called the leans can result when a banked attitude, to the left for example, may be entered too slowly to set in motion the fluid in the “roll” semicircular tubes. [Figure 1-2] An abrupt correction of this attitude can now set the fluid in motion, creating the illusion of a banked attitude to the right. The disoriented pilot may make the error of rolling the aircraft into the original left-banked attitude or, if level flight is maintained, will feel compelled to lean to the left until this illusion subsides.

Coriolis Illusion
The pilot has been in a turn long enough for the fluid in the ear canal to move at the same speed as the canal. A movement of the head in a different plane, such as looking at something in a different part of the cockpit, may set the fluid moving thereby creating the strong illusion of turning or accelerating on an entirely different axis. This is called Coriolis illusion. This action causes the pilot to think the aircraft is doing a maneuver that it is not. The disoriented pilot may maneuver the aircraft into a dangerous attitude in an attempt to correct the aircraft’s perceived attitude.

For this reason, it is important that pilots develop an instrument cross-check or scan that involves minimal head movement. Take care when retrieving charts and other objects in the cockpit—if you drop something, retrieve it with minimal head movement and be alert for the Coriolis illusion.

Graveyard Spiral
As in other illusions, a pilot in a prolonged coordinated, constant-rate turn, will have the illusion of not turning. During the recovery to level flight, the pilot will experience the sensation of turning in the opposite direction. The disoriented pilot may return the aircraft to its original turn. Because an aircraft tends to lose altitude in turns unless the pilot compensates for the loss in lift, the pilot may notice a loss of altitude. The absence of any sensation of turning creates the illusion of being in a level descent. The pilot may pull back on the controls in an attempt to climb or stop the descent. This action tightens the spiral and increases the loss of altitude; hence, this illusion is referred to as a graveyard spiral. At some point, this could lead to a loss of control by the pilot.

Somatogravic Illusion
A rapid acceleration, such as experienced during takeoff, stimulates the otolith organs in the same way as tilting the head backwards. This action creates the somatogravic illusion of being in a nose-up attitude, especially in situations without good visual references. The disoriented pilot may push the aircraft into a nose-low or dive attitude. A rapid deceleration by quick reduction of the throttle(s) can have the opposite effect, with the disoriented pilot pulling the aircraft into a nose-up or stall attitude.

Inversion Illusion
An abrupt change from climb to straight-and-level flight can stimulate the otolith organs enough to create the illusion of tumbling backwards, or inversion illusion. The disoriented pilot may push the aircraft abruptly into a nose-low attitude, possibly intensifying this illusion.

Elevator Illusion
An abrupt upward vertical acceleration, as can occur in an updraft, can stimulate the otolith organs to create the illusion of being in a climb. This is called elevator illusion. The disoriented pilot may push the aircraft into a nose-low attitude. An abrupt downward vertical acceleration, usually in a downdraft, has the opposite effect, with the disoriented pilot pulling the aircraft into a nose-up attitude.

Visual
Two illusions that lead to spatial disorientation, the false horizon and autokinesis, are concerned with the visual system.

False Horizon
A sloping cloud formation, an obscured horizon, an aurora borealis, a dark scene spread with ground lights and stars, and certain geometric patterns of ground lights can provide inaccurate visual information, or false horizon, for aligning the aircraft correctly with the actual horizon. The disoriented pilot may place the aircraft in a dangerous attitude.

Autokinesis
In the dark, a stationary light will appear to move about when stared at for many seconds. The disoriented pilot could lose control of the aircraft in attempting to align it with the false movements of this light, called autokinesis.

Postural
The postural system sends signals from the skin, joints, and muscles to the brain that are interpreted in relation to the Earth’s gravitational pull. These signals determine posture. Inputs from each movement update the body’s position to the brain on a constant basis. “Seat of the pants” flying is largely dependent upon these signals. Used in conjunction with visual and vestibular clues, these sensations can be fairly reliable. However, because of the forces acting upon the body in certain flight situations, many false sensations can occur due to acceleration forces overpowering gravity. [Figure 1-4] These situations include uncoordinated turns, climbing turns, and turbulence.

Related Posts

There is no other posts in this category.

Post a Comment

Popular