On a straight wing aircraft, the airflow strikes the wing leading edge at 90°, and its full impact produces pressure and lift. A wing with sweepback is struck by the same airflow at an angle smaller than 90°. This airflow on the swept wing has the effect of persuading the wing into believing that it is flying slower than it really is; thus the formation of shock waves is delayed. Advantages of wing sweep include an increase in critical Mach number, force divergence Mach number, and the Mach number at which drag rises peaks. In other words, sweep delays the onset of compressibility effects.
The Mach number, which produces a sharp change in drag coefficient, is termed the “force divergence” Mach number and, for most airfoils, usually exceeds the critical Mach number by 5 to 10 percent. At this speed, the airflow separation induced by shock wave formation can create significant variations in the drag, lift, or pitching moment coefficients. In addition to the delay of the onset of compressibility effects, sweepback reduces the magnitude in the changes of drag, lift or moment coefficients. In other words, the use of sweepback “softens” the force divergence.
The stall situation can be aggravated by a T-tail configuration, which affords little or no pre-stall warning in the form of tail control surface buffet. [Figure 4-62] The T-tail, being above the wing wake remains effective even after the wing has begun to stall, allowing the pilot to inadvertently drive the wing into a deeper stall at a much greater AOA. If the horizontal tail surfaces then become buried in the wing’s wake, the elevator may lose all effectiveness, making it impossible to reduce pitch attitude and break the stall. In the pre-stall and immediate post-stall regimes, the lift/drag qualities of a swept wing aircraft (specifically the enormous increase in drag at low speeds) can cause an increasingly flightpath with no change in pitch attitude, further the AOA. In this situation, without reliable AOA a nose-down pitch attitude with an increasing no guarantee that recovery has been affected, elevator movement at this stage may merely keep stalled.
Characteristic of T-tail aircraft to pitch up viciously stalled in extreme nose-high attitudes, making difficult or violent. The stick pusher inhibits this At approximately one knot above stall speed, programmed stick forces automatically move the stick preventing the stall from developing. A G-limiter incorporated into the system to prevent the pitch generated by the stick pusher from imposing excessive aircraft. A “stick shaker,” on the other hand provides stall warning when the airspeed is five to seven percent above stall speed.
Post a Comment
Post a Comment